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Computational details 

Potential energy function. The NP-B analytic potential energy function1 is used 

throughout this article. This potential energy function is based on the embedded atom model of 

Mei and Davenport,2 which was reparametrized and validated1 for pure Al clusters and 

nanoparticles using a large and diverse dataset of density functional theory structures and energies. 

Big-bang (BB) searching algorithm. For each particle size n, 10,000 highly compressed 

nearly spherical particles were randomly generated, such that the minimum and maximum 

distances between any two nearest-neighbor atoms were 0.8 Å and 1.0 Å, respectively. Comparing 

these values to the experimental equilibrium bond distances in Al2 (2.7 Å3) and bulk Al (2.8 Å) 

shows that the resulting structures are compressed to only ~4% of their equilibrium volumes. Each 

of the randomly generated clusters was then optimized using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm4 with a convergence criterion of 5 × 10-4 eV/Å for the maximum 

absolute value of the 3N Cartesian gradient components. The lowest-energy structure in the 

resulting distribution of local minima for each n is denoted the big-bang global minimum (BBGM). 

Many of the local minima that are found correspond to the same structure, and energetic 

and geometric criteria were used to determine the final set of distinct local minima. Specifically, 

two structures were deemed to be identical if (1) their energies differed by less than 0.01 eV and (2) 

no bond distance less than 5.4 Å (twice the bond distance in Al2) differed by more than 0.0005 Å.  

Molecular dynamics simulation and quenching (MDSQ) method. Molecular dynamics 

(MD) simulations were also performed for each cluster size n. In these simulations, a normal mode 

analysis was carried out at the BBGM, and 10 independent trajectories were started from the 

BBGM with the initial coordinates and momenta for each trajectory selected from a phase space 

distribution of classical harmonic oscillators5 with a temperature of 200 K. The system was 

equilibrated at 200 K for 1.2 ns. The temperature was then increased by 20 K by raising the target 

temperature of the thermostat, and another 1.2 ns constant temperature simulation was performed. 

This heating was repeated until the temperature reached 1000 K for n > 30 and 1400 K for n ≤ 30. 

During the MD simulations, one out of every 1000 molecular configurations was randomly 
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quenched to the nearest local minimum. For nanoparticles with n > 30, an average of 246,000 
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The molecular dynamics simulations were carried out using the Liouville formulation6 of 

the velocity Verlet integrator7 with a time step of 2.0 fs coupled with a two chain Nosé-Hoover 

thermostat.8,9 The temperature of the particle is calculated using5 
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where Nf is the number of degrees of freedom of the particle, and kB is the Boltzmann constant. 

The molecular dynamics program used was ANT 07.10  

A set of distinct local minima was obtained from the quenched structures using the 

energetic and geometric criteria discussed above. We note that if more than 2000 distinct minima 

were found, only the 2000 lowest-energy ones were considered. 

 For n < 50, both the BB and the MDSQ methods found the same lowest-energy minima. For 

some nanoparticles with n ≥ 50, the lowest-energy minimum located by the BB method is 0.2 – 0.3 

eV higher in energy than that located by the MDSQ simulations. The total number of distinct 

minima located by the BB algorithm is much larger than that of the MDSQ algorithm. For example, 

more than 1000 distinct minima were located for particles larger than Al16 using the BB method, 

whereas only 571, 496, and 535 structures are located using the MDSQ simulations for Al19, Al20, 

and Al21, respectively. Despite these differences, there is generally good agreement among the sets 

of structures (isomers) located by the two searching methods, so we believe that the structures 

obtained are complete enough to draw conclusions about energy landscapes, magic numbers, and 
average isomeric energies. When calculating Pγ or FS

!P , the sum in Eqs. 5 and 6 is over all (2000 at 
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most) lowest-energy isomers determined in the MDSQ step (except for Al2 and Al3, which are 

treated as special cases). 

 Partition functions. The rotational partition function of isomer γ is calculated by the classical 

rigid-rotor approximation, which yields 
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for non-linear structures, where A(γ), B(γ), and C(γ) are the three principal moments of inertia and σ(γ) 

is the rotational symmetry number, and yields 
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for linear structures, where (I (γ) is the moment of inertia. To obtain σ(γ), one needs to know the point 

group symmetry of every isomer. This is found using Gaussian 0362 (with a “loose” criterion for 

judging the symmetry of molecules, i.e., keyword symm=loose). The vibrational partition function is 

calculated using the harmonic-oscillator approximation, 
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where )(!
"
m

 is the harmonic vibrational frequency of mode m of isomer γ.  

One problem of calculating )(
Vib
!

q  using Eq. A4 is that, for the large particles, there are 

many low-frequency vibrational modes. These small frequencies make very large contributions 
that are proportional in the classical limit to the reciprocal of the frequency. However, )(

Vib
!

q  

calculated using either Eq. 11 or this low-frequency limit may be overestimated because of the 

anharmonicity of the vibration. To reduce the error caused by the breakdown of the harmonic 

approximation for small frequencies, one may raise all the small frequencies (those that are below 

a certain value); for example, one may raise all frequencies smaller than 100 1
cm

!  to 100 1
cm

! . 
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This produces an independent-mode effective harmonic oscillator whose statistical thermodynamic 

properties better mimic those of the anharmonic low-frequency coupled mode. We tested three 

values, 70 1
cm

! , 100 1
cm

! , and 130 1
cm

! , for the cutoff frequency. The nonseparable 

distributions calculated using the three values are not very different, for example, the average 

absolute deviation (average over all 64 particles) of the probabilities of the global minimum at 

1500 K calculated using 100 1
cm

!  to those probabilities calculated using 70 1
cm

!  and 130 1
cm

!  

are just 7 and 4 percent, respectively. Therefore, we somewhat arbitrarily choose 100 1
cm

! . 

Although the harmonic-oscillator, rigid-rotator motor is not appropriate for the most 

quantitative work on small molecules, it is chosen because its efficiency allows the calculation of 

the required large number (~105) of rovibrational partition functions of these often very large 

molecules (average number of frequencies ~102). With the above effective-frequency treatment of 

low-frequency modes, it should be accurate enough for studying the distribution properties of the 

isomers. 

In evaluating Eq. 17 we assume in this article that qElec is independent of n. 

 Density of vibrational states.  The expansion in Legendre polynomials Pl (ω) is truncated at 

lmax = 30. 

 Units.  1 eV/particle = 23.6 kcal/mol = 96.5 kJ/mol. 
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Additional nanothermodynamic equations 

 Assuming separable electronic, vibrational, and rotational motions, Eq. 18 becomes 

 

! 

"ET
tot

= 1.5kT + ET
Elec

+ ("Ee
(#)

+ EVib
(#)

+ ERot
(#)
)P#

#
$ , (B1) 

where )(
Vib
!

E  and )(
Rot
!

E  are the vibrational energy and rotational energy of isomer γ, respectively. 

In the classical limit, 

! 

ERot
(")

= 1.5kT  for non-linear particles and 

! 

ERot
(")

= kT  for linear particles. The 

energy of the particle including thermal and ZPE contributions is then given by 
 tot)1(

e
tot

TT
EEE !+= . (B2) 

Note that 

! 

EVib
(")  and 

! 

"ET
tot  include ZPE. 

 Most work on clusters and nanoparticles focuses on the energetics of the global minima; 

thermal and ZPE contributions are often neglected. It is interesting to compare conclusions based 

on the classical equilibrium energies of the global minima to those based on the thermal average 

energies in which both ZPE and thermal contributions are included. Thus we define 
 )()]1()1([)( tottottot

1 nEnEEnE
TTTT

!!+=" , (B3) 

 )(2)1()1()( tottottottot
2 nEnEnEnE

TTTT
!++!=" , (B4) 

At 0 K and excluding ZPE contributions, these quantities will reduce to )()1(1 nEe!  or )(
)1(

2 nEe! .  

 We also define a free energy analog of Eq. B3 by 

 

! 

"1GT (n) = [GT (1) +GT
tot
(n #1)]#GT

tot
(n), (B5) 

 One can define a particle isomeric free energy GIso by the same strategy as used for Eq. 19. 

In particular we define GIso as the excess free energy because there is more than one isomer: 

  GIso = G – G(γ = 1) (B6) 

where G(γ) is the free energy of isomer γ. By the definition of free energy, we have  

  

! 

e
"G RT

=
#
$ e

"G (# ) RT  (B7) 

With this notation we can write Eq. 5 as 
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P" =
e
#G (" ) RT

"
$ e
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Combining (B6) and (B7) with (B8) for γ = 1 yields: 



 

 

S8 

    

! 

GIso = kT ln P1 (B9) 

where P1 is the nonseparable probability of the global minimum given by Eq. 5. 
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Additional discussion 

 Although we have used the second finite difference to discuss particle stability in Section 4, 

one can also use the first finite difference. The first finite difference of the total energy ( )(
)1(

1 nEe! ) 

is the energy needed to remove one Al atom from the cluster or nanoparticle and is defined by 

Baletto and Ferrando5 as 

 )()]1()1([)(
)1()1(

e
)1(

1 nEnEEnE eee !!+=" , (C1) 

First differences of 

! 

ET
tot
(n)  and 

! 

GT
tot
(n)  are defined analogously.  First finite differences are shown 

in Figs. S3 and S4.  Analysis of the first finite differences led to similar conclusions as analysis of 

the second finite differences, in particular prominent peaks on the )(
)1(

1 nEe!  plot are found at n = 

13, 19, 23, 26, 32, 38 and 61. The peak appearing in Fig. 9 at n = 55 is buried in the plateau 

encompassing n = 52 – 55 in Fig. S3(a). It seems that another peak is building up in Fig. S3(a) after 

n = 65. The high peaks in Fig. S2(a) appear at n = 13, 19, 23, 38, 55 and 61, and therefore these 

numbers are candidates for the magic numbers of Aln particles based on global minima. 

 In Fig. S7, 3D plots of Pγ vs. temperature and energy of the isomers (ΔE, which is potential 

energy relative to the global minimum, is called DE in the figures) are depicted for several particles 

with n = 13 (Fig. S7(a)), 19 (Fig. S7(b)), 23 (Fig. S7(c)), 38 (Fig. S7(d)), 55 (Fig. S7(e)), and 61 (Fig. 

S7(f)). The selected particles are the five candidates for the magic particles plus Al61, for which the 

third lowest-energy isomer is the dominant structure even at room temperature. In Fig. S7, a red line 

perpendicular to the ΔE axis corresponds to an isomer at that energy. For n = 13, 19, 23, and 55, the 

global minimum always has the largest probability, while other higher-energy isomers always have 

very small probabilities. For n = 38, the probability of the global minimum begins to drop after 300 

K, and after 600 K it becomes very small. The probabilities of the fourth- and sixth-lowest energy 

isomer of Al38 are non-negligible even at 400 K. For n = 61, it is interesting that the probability of 

the global minimum is negligible over the whole temperature range. Although the probability of the 

third lowest-energy isomer is high at room temperature (see also Fig. 9(a) (top)), it drops quickly as 

temperature increases. At 500 K, it drops to just about 23%. This may be because that isomer has 

more low-frequency vibrational modes than the global minimum. 
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 Plots of D (defined by Eq. 11) vs. temperature T and equilibrium isomer energy ΔE are given 

in Figs. 11 and S8.  

 For Al13, the second isomer is higher in energy by 1.01 eV. As a result, up to 1000 K, Fig. 

S8(a) shows that the probability of the global minimum is almost 100%. It begins to drop after 1000 

K, and it drops quickly after 1200 K, but it is still more than 60% at 1500 K. After 1000 K, the 

probabilities of isomers at about 1.0 eV and 1.2 eV begin to increase. Therefore, we would expect 

Al13 to have a melting point around 1200 K.  

 For Al19 and Al23,  Fig. S8 shows that the probability of the global minimum drops quickly 

after 1000 K and 800 K, respectively. For Al19, two peaks appear after 800 K at around 0.6 eV and 

1.0 eV, and the second peak is higher than the first peak at about 1500 K. For Al23, there are three 

peaks after 800 K, at about 0.6 eV, 0.8 eV, and 0.9 eV, respectively.  

 For Al38, Fig. 11 shows that the global minimum dominates only up to 400 K. Afterwards, 

the isomers at about 0.6 eV begin to make non-negligible contribution and after about 1000 K, their 

contribution begins to decrease, and isomers between 0.7 – 0.9 eV begin to make larger 

contributions. Therefore, we would expect that Al38 may have a much smaller melting point, and it 

may be difficult to make an Al38 particle with a well ordered structure, i.e. the global minimum. 

Therefore, for an experimental observables point of view n = 38 should not be classified as a magic 

number for Aln particles. 

 For Al55, the probability of the global minimum begins to drop at about 500 K. Then the 

probability of the isomers between 0.70 – 0.75 eV begins to rise quickly, and reaches a maxim at 

about 700 K. After 700 K, the probability between 0.70 – 0.75 eV drops slowly but is still higher 

than 80% even at 1500 K. Fig. S8(d) shows that the probability of each Al55 isomer in this energy 

range is very small. However, the MDSQ method located 205 isomers in this energy range. 

Therefore, even if individual isomers make small contributions, together they make a major 

contribution to the properties of the Al55 droplet, since Al55 melts at about 600 K.37 Therefore, 

unlike Al19, Al23, and Al38, where the liquid state is composed of structures in a much wider energy 

range, the melting of Al55 is some respects like a transition between two energy levels. 
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 We have checked the structures of some Al55 isomers between 0.70 – 0.75 eV. These 

structures can be obtained by removing one vertex atom on the C5 rotation axis of the global 

minimum (an icosahedron, see Fig. 4) and placing it on top of three aluminum atoms in one face of 

the icosahedral structure. This is the reason that these isomers fall in a narrow energy range. 

 For Al61, even at low temperatures such as 400 K, the particle has a wide distribution of 

potential energies. Above 400 K, Al61 particle can be viewed as a mixture of isomers in an energy 

range between 0.4 and 0.8 eV (see Fig. S8(e)). It is therefore very hard to make an Al61 particle with 

a well defined structure. 
 The quantity )(tot

1 nG
T

!  is shown as a function of cluster size in Fig. S3(c) for 300 and 1500 

K, and plots for at 500 and 800 K are given in Fig. S4(b). At 300 K, 

! 

"1GT (n)  shows trends very 

similar to those for )()1(1 nEe!  in Fig. S3(a) and for 

! 

"1ET
tot  in Fig. S3(b). The three plots agree well 

with each other for the locations of the peaks, i.e., for the potential magic numbers. They also predict 

that Al14 is one of the most unstable particles. There are also some subtle differences among the 

three properties, for example, the 

! 

"1GT (n)  plot shows a valley at n = 57, whereas the plots of 

)(tot
1 nET!  and )()1(1 nEe!  show a valley at n = 56. However, as temperature increases, some peaks in 

the plots of )(tot
1 nET!  become less prominent, and some others even vanish, for example, the peak 

at n = 38 disappears at the other three temperatures. Some peaks shift, for example, the peak at n = 

19 below 1500 K shifts to n = 20 at 1500 K, and the peak at n = 38 at 300 K shifts to n = 39 at higher 

temperatures. Valleys also shift, for example, on the )(tot
1 nET!  plot, the valleys at n = 56 at 300 and 

500 K shift to n = 57, and the valley at n = 50 at 300 and 500 K shifts to 49 at 800 K, whereas on the 

! 

"1GT (n)  plot it shifts to n = 49 at 500 K. In general, the peaks and valleys on the )(tot
1 nET!  and 

)()1(1 nEe!  plots are more prominent than those on the 

! 

"1GT (n)  plot. 

 Except for a few subtle differences at n = 34 and 35, n = 48 and 49, and n = 56 – 58, 
)(tot

2 nE
T

!  has almost the same trends as )(tot
2 nG
T

! . It is interesting that the high peak at n = 55 on 

the 

! 

"2GT (n)  plot vanishes and shifts to n = 56 at 500 K, while on the )(tot
2 nE
T

!  plot the same 

happens at 800 K. Furthermore the peak at n = 56 does not vanish at 1500 K, as it does on the 

Δ2GT(n) plot. 
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 The first (

! 

"1GT (n) ) and second (

! 

"2GT (n)) differences in free energy are better quantities 

for characterizing the stability of particles than are other quantities without entropy contributions 

(Δ1ET(n) and Δ2ET(n)) or even without any thermal or ZPE contributions (

! 

"1Ee
(1)
(n)  and 

! 

"2Ee
(1)
(n)). A key point, though, as also mentioned in Sect. 5, is that the Δ2ET(n) and Δ2GT(n) plots 

are more similar than different; this shows the importance of thermal energy and ZPE effects relative 

to entropic effects. 
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Table S1. Cohesive energies (CE, eV/atom) of the lowest-energy minima located. These values are 

plotted in Fig. 6, and those with n ≥ 12 are also plotted in Fig. S1. 

Cluster size CE Cluster size CE Cluster size CE Cluster size CE 

2 0.971 18 2.520 34 2.703 50 2.793 

3 1.399 19 2.563 35 2.709 51 2.797 

4 1.705 20 2.568 36 2.715 52 2.805 

5 1.867 21 2.574 37 2.722 53 2.813 

6 2.024 22 2.587 38 2.740 54 2.820 

7 2.103 23 2.615 39 2.739 55 2.827 

8 2.165 24 2.617 40 2.741 56 2.822 

9 2.215 25 2.626 41 2.748 57 2.821 

10 2.269 26 2.645 42 2.749 58 2.824 

11 2.311 27 2.649 43 2.755 59 2.828 

12 2.374 28 2.661 44 2.761 60 2.829 

13 2.454 29 2.667 45 2.764 61 2.837 

14 2.446 30 2.670 46 2.772 62 2.836 

15 2.473 31 2.676 47 2.776 63 2.838 

16 2.484 32 2.690 48 2.783 64 2.841 

17 2.497 33 2.694 49 2.788 65 2.846 
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Table S2. The probability (as a percentage) of finding the four lowest-energy minima at 300 K used 

in Figs. S2A–S2D with “1st” representing the global minimum, “2nd” the second lowest-energy 

isomer, and so on. 

 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

n IC IC IC IC IS IS IS IS 

2 100.0 NA NA NA 100.0 NA NA NA 

3 100.0 NA NA NA 100.0 NA NA NA 

4 100.0 NA NA NA 100.0 NA NA NA 

5 99.8 0.2 0.00 0.00 99.9 0.07 0.00 0.00 

6 100.0 0.00 NA NA 100.0 0.00 NA NA 

7 99.4 0.5 0.04 0.00 99.9 0.14 0.00 0.00 

8 99.7 0.2 0.08 0.00 99.9 0.04 0.02 0.00 

9 39.3 60.4 0.3 0.01 50.5 49.3 0.2 0.00 

10 100.0 0.01 0.00 0.01 99.9 0.09 0.01 0.00 

11 98.9 0.01 0.02 0.02 99.7 0.01 0.01 0.01 

12 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

13 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

14 74.6 17.3 4.7 1.7 70.8 21.3 5.3 1.3 

15 90.7 9.2 0.06 0.00 97.3 2.7 0.03 0.00 

16 80.9 10.2 7.9 0.8 58.3 20.3 18.9 1.9 

17 24.2 2.2 0.9 1.6 6.8 3.4 2.7 1.6 

18 90.3 9.6 0.01 0.01 68.6 31.3 0.01 0.01 

19 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

20 98.5 0.14 0.3 0.3 98.0 0.45 0.45 0.45 

21 70.9 10.1 9.9 6.3 67.7 14.1 8.9 6.3 

22 20.1 47.5 25.9 0.9 55.3 25.9 15.5 0.4 

23 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 
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24 73.2 13.2 13.4 0.04 73.1 14.1 12.7 0.04 

25 74.5 5.4 11.7 3.12 78.3 13.4 4.7 1.6 

26 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

27 99.1 0.8 0.01 0.01 99.7 0.3 0.00 0.00 

28 99.9 0.04 0.01 0.01 100.0 0.01 0.01 0.01 

29 65.8 33.3 0.5 0.06 93.8 5.4 0.5 0.07 

30 76.8 2.15 1.5 0.6 48.8 3.7 2.9 2.9 

31 2.3 17.4 7.3 7.35 19.4 16.1 7.9 7.9 

32 10.6 88.8 0.06 0.11 81.2 17.5 0.2 0.12 

33 27.0 2.15 2.15 2.15 30.1 6.3 6.3 6.3 

34 43.2 1.3 0.35 15.2 95.8 1.3 0.5 0.4 

35 96.8 0.8 0.5 1.2 78.7 7.2 5.5 4.3 

36 25.8 10.7 0.00 5.1 25.3 11.5 6.7 6.1 

37 3.8 0.11 14.4 1.4 42.5 34.7 3.6 2.5 

38 99.7 0.1 0.01 0.00 100.0 0.00 0.00 0.00 

39 0.1 44.4 28.0 12.8 52.3 25.6 21.8 0.09 

40 98.2 0.6 0.09 0.09 52.2 30.0 3.6 3.6 

41 8.85 0.2 0.2 0.2 7.02 3.0 3.0 3.0 

42 2.4 1.6 1.6 1.6 24.7 9.55 9.55 9.55 

43 0.00 21.5 21.5 5.5 35.1 16.2 16.2 5.2 

44 97.6 0.00 0.4 0.4 93.7 1.4 0.6 0.5 

45 24.9 24.9 25.0 0.4 12.5 12.5 12.5 6.85 

46 72.9 1.2 0.4 3.3 37.9 33.7 13.3 1.65 

47 48.9 11.3 4.2 4.25 31.7 20.3 5.3 5.3 

48 100.0 0.00 0.00 0.00 99.9 0.04 0.03 0.01 

49 87.2 11.2 1.35 0.07 90.9 9.1 0.02 0.00 

50 1.6 8.9 7.4 6.4 100.0 0.01 0.00 0.00 
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51 23.6 13.3 12.0 11.6 23.8 12.7 11.9 11.7 

52 38.4 21.8 19.7 12.5 40.1 21.5 20.0 11.7 

53 40.0 37.00 23.0 0.00 40.4 37.5 22.1 0.00 

54 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

55 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 

56 0.09 0.2 0.13 1.7 3.9 3.7 3.2 2.2 

57 58.7 2.8 2.8 3.8 90.1 0.75 0.75 0.75 

58 8.8 3.3 2.7 2.7 87.3 1.45 0.8 0.8 

59 66.7 9.3 12.6 1.6 68.3 16.9 14.3 0.12 

60 85.6 0.5 5.8 1.85 73.4 14.7 10.3 0.2 

61 0.08 0.00 95.3 0.85 100.0 0.01 0.00 0.00 

62 86.1 7.3 0.00 0.00 87.5 11.8 0.2 0.08 

63 0.00 0.00 3.1 0.00 74.2 10.9 4.9 3.11 

64 0.00 0.00 0.00 0.00 95.5 3.3 0.3 0.14 

65 0.01 0.01 0.00 0.00 48.5 48.5 3.0 0.05 
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Table S3. The probability (as a percentage) of finding the four lowest-energy minima at 1500 K used 

in Figs. S2A–S2D with “1st” representing the global minimum, “2nd” the second lowest-energy 

isomer, and so on. 

 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

n IC IC IC IC IS IS IS IS 

2 100.0 NA NA NA 100.0 NA NA NA 

3 100.0 NA NA NA 100.0 NA NA NA 

4 100.0 NA NA NA 100.0 NA NA NA 

5 54.3 33.8 11.7 0.12 78.8 18.7 2.5 0.02 

6 89.0 11.0 NA NA 99.8 0.2 NA NA 

7 15.0 15.7 19.3 1.9 60.3 16.1 7.8 2.1 

8 27.6 30.1 26.4 1.35 66.5 13.7 11.5 3.4 

9 21.4 33.9 13.8 7.05 31.7 31.5 10.7 4.6 

10 35.0 1.0 2.5 5.85 35.6 8.7 5.7 4.9 

11 2.8 0.5 1.25 1.25 8.8 1.3 1.2 1.2 

12 46.2 3.7 6.8 0.6 89.4 0.9 0.6 0.5 

13 62.6 4.2 4.1 2.6 99.6 0.04 0.04 0.03 

14 29.5 18.4 15.3 17.0 30.0 23.6 17.9 13.5 

15 17.1 30.8 7.7 5.6 31.9 15.5 6.2 3.5 

16 33.4 10.1 8.0 5.0 15.0 12.2 12.0 7.6 

17 6.1 1.0 0.5 1.3 1.5 1.3 1.3 1.1 

18 7.4 1.5 1.0 1.9 8.0 6.8 1.3 1.2 

19 27.2 3.5 3.8 3.2 90.4 0.5 0.5 0.5 

20 13.1 1.45 2.9 2.9 18.1 6.2 6.2 6.2 

21 10.2 5.0 7.2 5.9 9.85 7.2 6.6 6.12 

22 0.8 3.3 2.75 1.8 3.8 3.3 3.0 1.4 
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23 8.05 1.85 0.8 0.04 52.0 0.8 0.6 0.6 

24 8.1 5.45 6.1 1.9 12.0 8.6 8.45 2.6 

25 3.03 0.9 4.3 2.75 6.5 4.55 3.7 3.0 

26 25.6 4.9 0.9 1.1 20.3 2.0 1.4 1.4 

27 3.8 3.7 2.0 2.0 7.9 2.4 0.95 0.95 

28 6.5 2.9 0.6 1.2 11.5 1.9 1.8 1.8 

29 2.0 9.7 1.2 0.6 4.9 2.8 1.7 1.15 

30 4.0 0.9 0.8 0.3 1.2 0.7 0.7 0.7 

31 0.2 1.3 1.0 1.0 0.8 0.8 0.7 0.7 

32 0.6 13.6 0.3 1.0 3.0 2.2 0.9 0.8 

33 0.9 0.25 0.25 0.25 1.2 0.9 0.9 0.9 

34 0.04 0.04 0.02 1.1 1.6 0.7 0.6 0.5 

35 6.1 0.4 0.3 0.8 1.3 0.8 0.8 0.7 

36 0.6 0.5 0.00 0.4 0.5 0.4 0.4 0.4 

37 0.01 0.00 0.3 0.05 0.8 0.8 0.5 0.5 

38 0.00 0.15 0.04 0.03 20.4 0.6 0.4 0.4 

39 0.00 0.1 0.08 2.2 3.0 2.6 2.5 0.8 

40 8.4 0.1 0.08 0.08 1.25 1.1 0.7 0.7 

41 0.00 0.00 0.00 0.00 1.2 1.0 1.0 1.0 

42 0.03 0.04 0.04 0.04 0.5 0.4 0.4 0.4 

43 0.00 0.5 0.5 0.3 0.6 0.5 0.5 0.4 

44 1.85 0.00 0.5 0.4 0.9 0.4 0.3 0.3 

45 1.5 1.5 1.5 0.04 0.5 0.5 0.5 0.4 

46 2.2 0.04 0.03 1.2 1.2 1.2 1.0 0.65 

47 1.1 0.4 0.4 0.4 0.85 0.8 0.6 0.6 

48 8.9 0.00 0.03 0.02 3.7 0.8 0.7 0.6 
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49 0.07 0.06 0.9 0.4 4.3 2.7 0.8 0.5 

50 0.00 0.02 0.05 0.05 5.7 0.8 0.6 0.6 

51 0.12 0.11 0.11 0.1 3.65 3.2 3.2 3.2 

52 0.3 0.3 0.3 0.3 14.4 12.7 12.6 11.3 

53 0.35 0.3 0.3 0.01 21.9 21.5 19.4 0.8 

54 0.10 0.7 0.02 0.02 49.6 0.2 0.2 0.2 

55 0.01 0.03 0.02 0.01 58.8 0.3 0.25 0.25 

56 0.04 0.07 0.07 1.1 2.25 2.2 2.2 2.0 

57 0.11 0.2 0.2 0.3 3.4 1.3 1.3 1.3 

58 0.00 0.01 0.01 0.01 1.9 0.8 0.8 0.8 

59 0.03 0.01 0.02 0.09 3.4 2.5 2.5 0.95 

60 0.2 0.00 0.06 0.4 1.2 0.9 0.8 0.4 

61 0.00 0.00 0.08 0.00 11.1 1.6 1.5 1.0 

62 0.04 0.02 0.00 0.00 1.9 1.3 0.6 0.5 

63 0.00 0.00 0.01 0.00 1.15 0.8 0.7 0.6 

64 0.00 0.00 0.00 0.00 1.5 0.8 0.5 0.4 

65 0.00 0.00 0.00 0.00 4.5 4.5 2.6 1.15 
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Table S4. The cumulative probability (as a percentage) of the N lowest-energy isomers as a function 

of cluster size at 300 K. 

n\N 1 2 4 8 16 32 64 

2 100.0 NA NA NA NA NA NA 

3 100.0 NA NA NA NA NA NA 

4 100.0 NA NA NA NA NA NA 

5 99.8 100.0 100.0 NA NA NA NA 

6 100.0 100.0 NA NA NA NA NA 

7 99.4 99.96 100.0 100.0 NA NA NA 

8 99.7 99.92 100.0 100.0 NA NA NA 

9 39.3 99.7 99.99 100.0 100.0 NA NA 

10 99.96 99.97 99.98 99.99 100.0 NA NA 

11 98.9 98.9 99.0 99.0 99.2 99.6 100.0 

12 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

13 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

14 74.6 91.9 98.3 100.0 100.0 100.0 100.0 

15 90.7 99.93 99.99 100.0 100.0 100.0 100.0 

16 80.85 91.0 99.7 99.99 100.0 100.0 100.0 

17 24.2 26.3 28.8 32.9 41.1 57.5 91.1 

18 90.3 99.95 99.97 99.98 99.99 99.99 100.0 

19 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

20 98.5 98.7 99.2 99.6 99.96 100.0 100.0 

21 70.9 81.0 97.25 99.8 99.99 100.0 100.0 

22 20.1 67.7 94.5 98.3 99.1 99.6 99.8 

23 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

24 73.25 86.45 99.92 100.0 100.0 100.0 100.0 

25 74.5 79.9 94.7 99.3 99.6 99.97 100.0 
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26 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

27 99.1 99.94 99.96 100.0 100.0 100.0 100.0 

28 99.9 99.94 99.95 100.0 100.0 100.0 100.0 

29 65.8 99.15 99.7 99.87 99.97 99.98 99.99 

30 76.8 79.0 81.0 88.3 94.2 98.5 99.6 

31 2.3 19.7 34.4 50.1 72.3 98.4 99.7 

32 10.6 99.4 99.5 99.6 99.8 99.9 100.0 

33 26.95 29.1 33.4 39.2 58.3 98.1 99.7 

34 43.2 44.5 60.05 71.3 80.7 93.1 98.1 

35 96.8 97.6 99.3 99.7 99.8 99.9 99.96 

36 25.8 36.5 41.6 46.1 49.3 67.55 90.2 

37 3.77 3.9 19.7 29.4 70.7 90.8 96.0 

38 99.7 99.8 99.8 99.90 99.97 99.98 99.99 

39 0.11 44.5 85.4 93.4 93.9 96.4 99.91 

40 98.2 98.8 99.0 99.15 99.94 99.97 99.98 

41 8.85 9.1 9.6 10.4 12.3 16.0 96.2 

42 2.4 4.0 7.1 36.8 41.7 45.5 89.95 

43 0.00 21.5 48.5 77.95 92.3 95.0 97.4 

44 97.6 97.6 98.4 98.8 99.0 99.5 99.7 

45 24.9 49.85 75.2 78.8 91.5 95.0 98.65 

46 72.9 74.1 77.8 91.2 99.4 99.7 99.94 

47 48.9 60.1 68.6 85.6 94.0 97.0 97.7 

48 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

49 87.2 98.4 99.8 99.93 99.95 99.98 99.99 

50 1.6 10.4 24.3 35.2 77.5 87.55 94.6 

51 23.6 36.9 60.5 92.4 99.97 100.0 100.0 

52 38.4 60.2 92.4 100.0 100.0 100.0 100.0 
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53 40.0 77.0 100.0 100.0 100.0 100.0 100.0 

54 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

55 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

56 0.09 0.25 2.1 8.9 28.55 66.3 100.0 

57 58.7 61.4 68.0 83.0 97.6 99.89 99.97 

58 8.8 12.2 17.55 24.8 40.1 74.8 96.8 

59 66.7 75.9 90.1 97.8 99.5 99.8 99.90 

60 85.55 86.05 93.7 96.0 96.3 97.7 98.9 

61 0.08 0.08 96.2 96.4 96.6 98.3 99.0 

62 86.1 93.5 93.5 95.7 96.8 98.2 99.5 

63 0.00 0.00 3.1 79.85 80.6 87.9 96.0 

64 0.00 0.00 0.01 0.9 13.0 49.3 73.6 

65 0.01 0.03 0.03 28.6 53.0 60.5 85.7 
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Table S5. The cumulative probability (as a percentage) of the N lowest-energy isomers as a function 

of cluster size at 1500 K. 

n\N 1 2 4 8 16 32 64 

2 100.0 NA NA NA NA NA NA 

3 100.0 NA NA NA NA NA NA 

4 100.0 NA NA NA NA NA NA 

5 54.3 88.15 100.0 NA NA NA NA 

6 89.0 100.0 NA NA NA NA NA 

7 15.0 30.6 51.9 75.5 NA NA NA 

8 27.6 57.7 85.4 98.4 NA NA NA 

9 21.35 55.2 76.1 86.55 99.8 NA NA 

10 35.0 36.0 44.4 60.7 87.9 NA NA 

11 2.8 3.3 5.8 10.85 21.2 52.1 90.75 

12 46.2 49.9 57.35 65.0 77.2 89.5 97.35 

13 62.6 66.9 73.6 83.9 88.45 95.35 98.4 

14 29.5 47.85 80.2 98.1 99.2 99.6 99.85 

15 17.1 47.9 61.1 71.9 75.0 80.7 98.6 

16 33.4 43.5 56.55 70.9 80.5 94.9 99.5 

17 6.1 7.1 9.0 13.3 21.85 39.1 74.4 

18 7.4 8.8 11.7 15.5 21.6 35.4 51.95 

19 27.2 30.7 37.6 40.7 46.0 53.2 64.0 

20 13.1 14.6 20.4 35.35 75.0 93.3 96.3 

21 10.2 15.2 28.3 41.1 53.5 66.6 83.2 

22 0.8 4.12 8.7 15.9 21.6 33.0 51.8 

23 8.05 9.9 10.8 18.2 24.1 30.7 38.9 

24 8.1 13.5 21.5 33.6 42.3 52.2 58.5 

25 3.03 3.9 10.9 23.0 28.0 39.25 59.5 
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26 25.6 30.5 32.4 35.2 40.5 46.6 52.6 

27 3.8 7.5 11.5 19.0 27.1 34.0 40.6 

28 6.5 9.4 11.2 22.9 27.4 34.75 43.8 

29 2.0 11.7 13.5 16.1 21.45 25.1 33.2 

30 4.0 4.95 6.0 9.7 13.9 21.4 29.7 

31 0.2 1.4 3.4 7.8 17.6 31.0 38.3 

32 0.6 14.2 15.5 16.8 22.9 29.5 36.5 

33 0.9 1.1 1.6 2.7 7.9 26.3 33.0 

34 0.04 0.09 1.2 3.2 6.4 14.0 21.1 

35 6.1 6.5 7.7 9.4 11.75 16.1 22.9 

36 0.6 1.1 1.5 1.9 3.6 15.7 32.1 

37 0.01 0.02 0.4 0.9 4.9 9.97 15.1 

38 0.00 0.14 0.2 1.9 6.4 7.9 10.4 

39 0.00 0.1 2.4 4.0 5.7 15.3 33.4 

40 8.4 8.5 8.6 8.8 13.8 16.3 22.2 

41 0.00 0.00 0.00 0.00 0.00 0.00 8.9 

42 0.03 0.07 0.2 1.1 2.3 3.75 27.4 

43 0.00 0.5 1.3 3.9 6.6 9.3 17.1 

44 1.85 1.85 2.75 3.4 4.5 9.2 13.4 

45 1.5 2.9 4.4 4.95 8.6 11.5 17.6 

46 2.2 2.3 3.5 8.4 12.6 15.6 24.1 

47 1.1 1.5 2.4 4.05 7.0 9.9 14.2 

48 8.9 8.9 8.95 9.0 10.4 11.3 16.1 

49 0.07 0.13 1.4 3.4 5.0 7.95 12.1 

50 0.00 0.02 0.11 0.2 1.4 2.8 5.3 

51 0.12 0.2 0.4 0.8 1.15 8.55 12.4 

52 0.3 0.6 1.2 1.6 2.6 7.3 13.7 
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53 0.35 0.7 1.0 1.5 3.1 5.5 9.0 

54 0.1 0.8 0.8 0.8 1.0 6.9 8.6 

55 0.01 0.04 0.07 0.2 2.35 9.8 28.8 

56 0.04 0.11 1.3 5.9 18.9 44.05 67.3 

57 0.11 0.3 0.8 2.0 3.5 5.4 7.4 

58 0.00 0.01 0.04 0.08 0.2 1.3 4.9 

59 0.03 0.04 0.15 1.0 2.8 5.8 7.6 

60 0.2 0.2 0.6 1.05 1.2 3.7 9.1 

61 0.00 0.00 0.08 0.13 0.2 1.5 4.8 

62 0.04 0.06 0.06 0.8 1.7 4.2 8.5 

63 0.00 0.00 0.01 0.8 0.8 2.3 7.6 

64 0.00 0.00 0.00 0.00 0.13 1.4 3.7 

65 0.00 0.00 0.00 0.03 0.07 0.11 6.9 
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Figure captions: 

Figure S1. Cohesive energies of the lowest-energy minima as a function of n–1/3 with n = 12 – 

65, where n is the number of atoms in the aluminum particle. 

Figure S2(a). The probability of the global minimum at 300 K and 1500 K: (top) IC; (bottom) IS. 

Figure S2(b). The probability of the second-lowest-energy minimum at 300 K and 1500 K: (top) 

IC; (bottom) IS. 

Figure S2(c). The probability of the third-lowest-energy minimum at 300 K and 1500 K: (top) IC; 

(bottom) IS. 

Figure S2(d). The probability of the fourth-lowest-energy minimum at 300 K and 1500 K: (top) 

IC; (bottom) IS. 

Figure S3. First energy differences as a function of cluster size: (a) )()1(1 nEe! , which is 

independent of temperature, (b) 

! 

"1ET
tot
(n)  at 300 and 1500 K, (b) 

! 

"1GT (n)  at 

300 and 1500 K. Note: ΔGT is labeled ΔGT in figures. 

Figure S4. First energy differences functions of cluster size at 500 and 800 K: (a) )(tot
1 nET!  

and (b) 

! 

"1GT
t
(n) . Note: ΔGT is labeled 

! 

"GT
tot  in figures. 

Figure S5. Second energy difference, 

! 

"2ET
tot
(n) , as a function of cluster size at 300 and 1500 

K. 

Figure S6. Second energy differences as a function of cluster size at 500 and 800 K: (a) 

! 

"2ET
tot
(n) ; (b) 

! 

"2GT (n) . Note: ΔGT is labeled 

! 

"GT
tot  in figures. 

Figure S7. 3D plots of Pγ vs. T (temperature in K) and DE (potential energy relative to the 

global minimum in eV) for particles with n = 13 (a), 19 (b), 23 (c), 38 (d), 55 (e), 

and 61 (f). 

Figure S8. 3D plots of D (calculated by Eq. 10 with δE = 0.05 eV) vs. T (temperature in K) 

and ΔE (potential energy relative to the global minimum in eV, labeld DE in the 

figure) for n = 13 (a), 19 (b), 23 (c), 55 (d), and 61 (e). 
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Fig. S1 
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Fig. S2(a) 
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Fig. S2(b) 
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Fig. S2(c) 
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Fig. S2(d) 
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Fig. S3(a)



 

 

S33 

 

Fig. S3(b) 
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Fig. S3(c) 
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Fig. S4(a) 
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Fig. S4(b) 
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Fig. S5 
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Fig. S6(a) 
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Fig. S6(b) 
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Fig. S7(a) 
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Fig. S7(b) 
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Fig. S7(c) 
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Fig. S7(d) 
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Fig. S7(e) 
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Fig. S7(f) 



 

 

S46 

 

Fig. S8(a) 
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Fig. S8(b) 
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Fig. S8(c) 
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Fig. S8(d) 
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Fig. S8(e) 

 

   


